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Predicted calcium titanate solution mechanisms

in calcium aluminoferrite and related phases
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Computer simulation, using an ionic, Born-like model, is used to investigate the
accommodation of titanium impurities in Ca-Al-Fe-O phases. Specifically, calcium titanate
solution in Al2O3, Fe2O3, CF, C2F, CA, C2A, C3A, and C4AF (where C denotes CaO) is
considered. The simulations predict that titanium impurities are found preferentially in the
ferrite phases. At sufficiently high concentrations, the solution involves the formation of
clusters containing 3 to 6 ions that strongly resemble the structure of the calcium titanate
phase. The calculations reveal that the compensation mechanism varies appreciably over
the range of compounds considered. C© 2000 Kluwer Academic Publishers

1. Introduction
Ferrite phases constitute a substantial proportion of
both calcium aluminate and Portland cements. In both
cases there is substantial solid solution of other ele-
ments, present as impurities in the raw materials. It is
highly likely that such impurities may affect the reac-
tivity of these phases. Additionally, it has been shown
in calcium aluminate cements [1, 2] that titanium plays
a major role in the exsolution of the ferrite into two
crystalline forms, one based on brownmillerite and the
other based on perovskite. Determination of the com-
plex mineralogy of these cements is an important ele-
ment in the determination of the phase proportions by
X-Ray diffraction [3]. However, in the aluminate and
ferrite phases, titanium impurities are accompanied by
silicon and magnesium impurities [4]. The presence of
magnesium and silicon makes it difficult to evaluate
the effect that titanium alone has on the defect chem-
istry of these compounds. To better understand the role
of titanium, the lowest energy mechanisms for the ac-
commodation of titanium in Al2O3, Fe2O3, CF, C2F,
CA, C2A, C3A, and C4AF (where C, A and F denotes
CaO, Al2O3 and Fe2O3 respectively) are determined by
computer simulation with special attention given to the
ferrite phases, Ca2Al2O5 (C2A), Ca2Fe2O5 (C2F) and
Ca2FeAlO5 (C4AF). Based on observations of cement
chemistry, titanium solution was calculated exclusively
with respect to CaTiO3 (CT) since free TiO2 is not ob-
served and an excess of free lime is generally available
for the formation of CT.

2. Methodology
2.1. Solution reactions
The energies of CT solution in the selected phases are
determined in the usual way: for a given solution reac-

tion, energies of the reactants are subtracted from the
energies of the products. For example, a possible reac-
tion for CT solution inα-Al2O3 is

CT → Ca′Al + Ti●

Al + 3O×O.

Whole formula units such as CT in the above reac-
tion have energies that are determined according to the
perfect lattice energy calculations described below. De-
fects, represented by Kr¨oger-Vink notation (for exam-
ple, Ca′Al and Ti●Al above), have energies determined
by the defect calculations also described below. The
energy of such a defect is the difference between the
energy of the lattice with and without the defect. There-
fore, a host ion sitting in the correct lattice position (for
example, O×O above) corresponds to zero defect energy.

As a result of CT solution, one or more formula units
of host lattice ions are displaced, i.e. the solute ions re-
place the host lattice ions. The displaced ions form new
lattice on the surface and increase the overall volume of
host lattice. Thus new units of host lattice form which
also have to be accounted for energetically. The num-
ber of units formed can be determined by considering
the subscripts of the defects in the solution reaction. In
the example above, there are two aluminum lattice sites
created (Ca′Al and Ti●Al ) and three oxygen sites formed
(3O×O), thus the lattice energy of one Al2O3 unit must
be included in the determination of the solution energy.

In some reactions, Fe3+ ions undergo reduction to
Fe2+. When this occurs, there is a purely electronic
contribution to the reaction, and the third ionization
energy of iron must be subtracted. This value is site
dependent because the Fe 3d orbitals are split differ-
ently in an octahedral site compared to a tetrahedral
site [5]. Often associated with the reduction of Fe3+ is
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TABLE I Physical constants

quantity value

Fe2+→ e− + Fe3+ (III ionization energy)
In an octahedral site 31.168 eV∗
In a tetrahedral site 30.995 eV∗

1
2O2→O (dissociation) 2.563 eV†

O+ e−→O− (first e− affinity) −1.461 eV‡

O− + e− → O2− (second e− affinity) 8.8 eV§

∗ the in-crystal electronic contribution, references [13] and [5].
† reference [14]
‡ reference [13]
§This value is based on the value needed on average to complete the
Born-Haber cycle using the calculated lattice energy and experimental
values for the other quantities of the compounds in this study. For a
discussion of the meaning of the second electron affinity of oxygen, see
Harding and Pyper [15] and Grimes, Binks and Lidiard [16].

the evolution of oxygen. When this happens, there are
three energy terms that must be included: the dissocia-
tion of O2, and the first and second electron affinities of
oxygen (i.e.1

2O2+ 2e−→O2−). The values used for
these additional quantities are summarized in Table I.

2.2. Calculation of interatomic energies
To calculate the perfect lattice and defect energies, a
Born-like model is used in which the ions assume their
formal charges. In this approximation, the lattice en-
ergy arises from three sources: Coulombic interactions
between ions, a shell model description of atomic polar-
ization, and an additional interaction between ion pairs
described by parameterised short-range forces that ac-
count for electron cloud overlap and dispersion forces.
In these calculations, the Coulombic forces are summed
using Ewald’s method to provide convergence. The
shell model approximates atomic polarization by mod-
elling each polarizable ion as a massless shell of charge
Y that is able to move with respect to a massive core
with chargeX, subject to a restraining harmonic force
constantk [6]. To represent the short-range interactions,
ion pairs interact through Buckingham potentials

Ei j (r ) = Ai j e
−r/ρi j − Ci j /r

6

wherer is the distance between the two atomic species
(each cation–anion pair and the anion–anion pair) and
Ai j , ρi j , andCi j are adjustable parameters specific to
each pair of ionsi and j . The magnitude of this inter-
action falls off quickly with increasingr , and only ions
separated within a certain cut-off distance (17.52Å in
this study) are considered.

2.3. Perfect lattice calculations
The perfect lattice energy is determined by starting with
the experimentally determined structure and then ad-
justing both ion positions and lattice vectors, using the
Newton-Raphson minimization procedure, until each
ion experiences zero force. The short-range potential
parameters are chosen so that the structure resulting
from energy minimization reproduces the experimen-
tally determined structure as closely as possible. The

TABLE I I Potential parameters

short-range potentials reference

O2−–O2− A 9547.96 eV [7–9]
ρ 0.21916Å−1

C 32.0 eVÅ6

Al3+–O2− A 1725.2 eV [7]
ρ 0.28971Å−1

C 0.0 eVÅ6

Fe3+–O2− A 1414.6 eV [8]
ρ 0.3128Å−1

C 0.0 eVÅ6

Fe2+–O2− A 835.5 eV [8]
ρ 0.3288Å−1

C 0.0 eVÅ6

Ca2+–O2− A 1186.48 eV [7]
ρ 0.339Å−1

C 0.0 eVÅ6

Sr2+–O2− A 682.7 eV [9]
ρ 0.3945Å−1

C 0.0 eVÅ6

Ti4+–O2− A 2131.04 eV this work
ρ 0.3038Å−1

C 0.0 eVÅ6

shell model parameters

O2− Y −2.80|e| [7–9, 17]
X 0.80|e|
k 54.8 eVÅ−2

set of short-range potential parameters are constrained
to be the same for every structure in the study. This
results in a parameter set that is capable of describing
the potential energy between two ions not only at equi-
librium but over a range of separations and a variety of
coordinations. This is essential for modelling the struc-
tural relaxation around point defects. Nevertheless, the
methodology is approximate, and one should com-
pare relative disorder and solution energies in the var-
ious materials rather than base an analysis on absolute
energies.

The short-range potential parameters (Table II) for
the host materials of this study have been shown to suc-
cessfully reproduce the lattice parameters of Al2O3,
Fe2O3, CaO, CA, C2A, C3A, CA2, CA6, CF, C2F,
and C4AF [7]. The Ca2+–O2− parameters were chosen
specifically for that study. The Fe3+–O2−, Al3+–O2−,
and O2−–O2− parameters were also developed to repro-
duce a large variety of structures, this data being sum-
marised in Zacate and Grimes [7]. Two of those studies
[8, 9] are the sources of the Fe2+–O2− and Sr2+–O2−
potential parameters.

The Ti4+–O2− parameters have been modified slight-
ly from a study of SrTiO3 interfaces [9]. They have
been chosen to reproduce the mixed oxide structural
parameters of Table III as closely as possible, and are
therefore unsuitable for modelling TiO2 polymorphs.
However, the potential set reproduces the structures
of SrTiO3, ilmenite (FeTiO3), and CT very well. The
agreement with the experimental structures of Al2TiO5
and pseudobrookite (Fe2TiO5) is also acceptable. Thus,
the Ti4+–O2− parameters describe Ti4+ in a variety
of crystallographic environments—necessary for mod-
elling the relaxation around Ti4+ impurities in cement
phases.
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TABLE I I I Summary of structural parameters of mixed oxides con-
taining titanium∗

percent
compound property calculated observed agreement reference

SrTiO3 a (Å) 3.917 3.905 100.30 [18]
FeTiO3 a (Å) 5.121 5.088 100.65 [19]

c (Å) 14.07 14.09 99.87
CaTiO3 a (Å) 5.4113 5.4458 99.37 [20]

b (Å) 7.6458 7.6453 100.01
c (Å) 5.4068 5.3829 100.44

Fe2TiO5 a (Å) 3.61 3.72 97.04 [21]
b (Å) 9.94 9.79 101.58
c (Å) 9.96 9.93 100.26

Al2TiO5 a (Å) 3.502 3.591 97.51 [22]
b (Å) 9.556 9.429 101.34
c (Å) 9.768 9.636 101.37

∗significant figures from references

2.4. Defect calculations
To calculate the enthalpy of a defect, such as a va-
cancy, an interstitial ion, or a substitutional ion, the
Mott-Littleton approach is used [10]. This method be-
gins with the relaxed perfect lattice and then places a
defect in the centre of a spherical region I. All ion po-
sitions in region I are allowed to relax in response to
the defect, and interactions are summed over all pairs
of ions within the region. The radius of region I in these
calculations is 11.68̊A. Larger radius values than this
make negligible difference to predicted defect energies.
The outer region, region IIb, extends to infinity and the
interaction of the region IIb ions with the lattice de-
fect is treated as a dielectric response in accord with
the Mott-Littleton approximation. To ensure a smooth
transition between regions I and IIb, an interfacial re-
gion, region IIa, is introduced. The relaxation of ion
positions within region IIa is determined within the
Mott-Littleton approximation (i.e. ions are subject to
forces approximated assuming a dielectric response);
however, interaction energies between ions in region
IIa and region I are calculated explicitly. Consequently
the radius of region IIa must be greater than that of re-
gion I by more than the short-range interaction cut-off
distance defined earlier (see Section 2.2). The region
IIa radius in these calculations is 29.6Å, and the whole
procedure is executed with the CASCADE code [11].

3. Results
The results are presented in three sections. First, the
lowest energy solution reactions for the non-ferrite
phases (Al2O3, Fe2O3, CF, CA, and C3A) are con-
sidered. Then, the solution mechanisms for three stoi-
chiometries of the ferrite phase (C2A, C4AF, and C2F)
are considered in greater detail. Finally, defect cluster-
ing in C4AF and C2F is examined.

In each of the host materials considered below, one
can envisage many possible solution mechanisms asso-
ciated with different charge compensating defects. The
majority of these have highly unfavourable energies.
For example, except for those reported, other reaction
mechanisms involving vacancies or cation interstitials
have solution energies anywhere from 6 eV to 24 eV

per titanium ion incorporated. For conciseness, only
the lowest energy solution reactions are reported. Fur-
thermore solution mechanisms in which titanium sub-
stitutes for calcium will not be included because it is
clear that a small highly charged ion such as titanium
would be unlikely to substitute for a large substantially
lower charged ion such as calcium.

3.1. Non-ferrite phases
In each case below, the total solution energy is given.
To compare different mechanisms, it is necessary to
normalize the energies (solution energy per CT formula
unit, for example).

• α-Al2O3

2CT 1H = 9.48 eV−→ 2Ti●

Al +O′′i + 3O×O + 2CaO

CT 1H = 4.69 eV−→ Ca′Al + Ti●

Al + 3O×O

• α-Fe2O3

2CT 1H = 8.00 eV−→ 2Ti●

Fe+O′′i + 3O×O + 2CaO

CT 1H = 2.93 eV−→Ca′Fe+ Ti●

Fe+ 3O×O

2CT+ 2Fe×Fe
1H = 4.65 eV−→

2Ti●

Fe+ 2Fe′Fe+ 3O×O + 2CaO+ 1
2O2

• CA

2CT 1H = 7.58 eV−→Ca×Ca+ 2Ti●

Al + 4O×O+O′′i +CaO

• CF

2CT 1H = 7.78 eV−→
Ca×Ca+ 2Ti●

Fe+ 4O×O +O′′i + CaO

2CT + 2Fe×Fe
1H = 3.55 eV−→

Ca×Ca+ 2Ti●

Fe+ 2Fe′Fe+ 4O×O + CaO+ 1
2O2

• C3A

2CT 1H = 5.52 eV−→ 2Ca×Ca+ V′′Ca+ 2Ti●

Al + 6O×O

In all the above phases, titanium substitutes for the
trivalent host cation. In the phases which contain iron,
reduction of Fe3+ to Fe2+ is favoured so that Fe′Fe is the
compensating defect. In alumina, the compensating de-
fect is Ca′Al . In CA, oxygen interstitials compensate ti-
tanium substitution. Finally, in C3A, calcium vacancies
provide the lowest energy compensation.

3.2. The ferrite phase
In this section, the solution of calcium titanate in the
ferrite phase is considered in detail. In particular, the
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solution reactions are written to distinguish the crystal-
lographic sites occupied by the titanium so that “(o)”
denotes the octahedral site and “(t)” represents the tetra-
hedral site. The effect of reducing environments on so-
lution in C2F and C4AF is also considered.

The basic solution reactions are as follows:

• C2A

2CT 1H = 5.54 eV−→
2Ca×Ca+ Ti●

Al(o) + Ti●

Al(t) + 5O×O +O′′i

• C2F

2CT + 2Fe×Fe(t)
1H = 5.35 eV−→

2Ca×Ca+ 2Fe′Fe(t)+ Ti●

Fe(o)+ Ti●

Fe(t)

+ 5O×O + 1
2O2

2CT 1H = 4.90 eV−→
2Ca×Ca+ Ti●

Fe(o)+ Ti●

Fe(t)+ 5O×O +O′′i

• C4AF

2CT + 2Fe×Fe(o)
1H = 6.41 eV−→

2Ca×Ca+ 2Fe′Fe(o)+ Ti●

Fe(o)+ Ti●

Al(t)

+ 5O×O + 1
2O2

2CT 1H = 6.92 eV−→
Ca×Ca+ Ti●

Fe(o)+ Ti●

Al(t) + 5O×O + V′′Ca+ CaO

2CT 1H = 5.40 eV−→
2Ca×Ca+ Ti●

Fe(o)+ Ti●

Al(t) + 5O×O +O′′i

The distinction between octahedral and tetrahedral sites
is important because there is an appreciable difference
in defect energy for titanium at an octahedral versus
a tetrahedral site. Consistently, lower energy solution
mechanisms are obtained when the titanium is located
only at octahedral sites. The following reactions exploit
this by requiring that titanium occupies only octahedral
sites.

• C2A

2CT + Al×Al(o)
1H = 3.30 eV−→

2Ca×Ca+ 2Ti●

Al(o) + Al×Al(t) + 5O×O +O′′i

• C2F

2CT + 2Fe×Fe(t)+ Fe×Fe(o)
1H = 3.48 eV−→

2Ca×Ca+ 2Fe′Fe(t)+ 2Ti●

Fe(o)+ Fe×Fe(t)

+ 5O×O + 1
2O2

2CT + Fe×Fe(o)
1H = 3.02 eV−→

2Ca×Ca+ 2Ti●

Fe(o)+ Fe×Fe(t)+ 5O×O +O′′i

• C4AF

2CT + 3Fe×Fe(o)
1H = 4.46 eV−→

2Ca×Ca+ 2Fe′Fe(o)+ 2Ti●

Fe(o)+ Fe×Al(t)

+ 5O×O + 1
2O2

2CT + Fe×Fe(o)
1H = 4.96 eV−→

Ca×Ca+ 2Ti●

Fe(o)+ Fe×Al(t) + 5O×O + V′′Ca+ CaO

2CT + 2Fe×Fe(o)+ Al×Al(t)
1H = 4.04 eV−→

2Ca×Ca+ 2Fe′Al(t) + 2Ti●

Fe(o)+ Al×Fe(o)

+ 5O×O + 1
2O2

2CT + Fe×Fe(o)
1H = 3.44 eV−→

2Ca×Ca+ 2Ti●

Fe(o)+ Fe×Al(t) + 5O×O +O′′i

At all three stoichiometries of the ferrite phase, the low-
est energy solution reaction occurs when oxygen inter-
stitials are the compensating defects.

To understand solution under reducing conditions, it
is necessary to assume that the defects formed due to
the reduction process are already present. When C2F is
reduced

2Fe×Fe(t)−→ V●●

O+ 2Fe′Fe(t)+ 1
2O2

and when C4AF is reduced

2Fe×Fe(o)+2Al×Al(t) −→ V●●

O+2Al×Fe(o)+2Fe′Al(t) + 1
2O2.

Thus, oxygen vacancies are present in the reduced ma-
terials. Since the compensating species for CT solution
in C4AF and C2F is the oxygen interstitial, CT more
readily disolves in reduced C2F

2CT + V●●

O+ Fe×Fe(o)
1H =−1.34 eV−→

2Ca×Ca+ Ti●

Fe(o)+ Fe×Fe(t)+ 6O×O

and in reduced C4AF

2CT + V●●

O+ Fe×Fe(o)
1H = −1.20 eV−→

2Ca×Ca+ Ti●

Fe(o)+ Fe×Al(t) + 6O×O.

This means that the amount of dissolved CT depends
markedly on the degree to which the ferrite phase is
reduced. That is, the solution is predicted to show sig-
nificant dependence on the partial pressure of oxygen.

3.3. Cluster formation in C4AF
Solution of CT in C4AF introduces O′′i and Ti●Fe(o) de-
fects which may cluster and thereby lower the solution
energy of CT. The favoured arrangement of defects in
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the cluster can be determined by calculating the cluster
geometry that has the lowest solution energy.

The favoured cluster in C4AF is {Ti●

Fe(o): O′′i :
Ti●

Al(t) }×, which has a solution energy of 1.22 eV per tita-
nium ion (compared to 1.72 eV without clustering). The
most stable configuration of the{Ti●

Fe(o): O′′i : Ti●

Al(t) }×
cluster in C4AF is shown in Fig. 1c. Note that now clus-
ter formation is considered and the preferred solution
mechanism includes a titanium ion on a tetrahedral Al
site. Essentially, the oxygen interstitial ion with its as-
sociated titanium ions results in the local lattice being
somewhat reminiscent of the solute CT phase, since the
coordination of the former tetrahedral Al site has been
increased.

The solution energy is lowered further when two
clusters bind together. This leads to the formation of
an octahedrally coordinated titanium ion at the for-
mer tetrahedral aluminum site since there are now two
oxygen interstitials adjacent to this site. This cluster,
a {Ti●

Fe(o): O′′i : Ti●

Al(t) : Ti●

Fe(o): O′′i : Ti●

Al(t) }× complex, is
illustrated in Fig. 1d. It has a titanium ion in the oc-
tahedral sites immediately above and below the new
octahedrally coordinated titanium ion (at the former
tetrahedral Al site). An additional adjacent titanium
in what remains a tetrahedral site completes the clus-
ter. This cluster has a corresponding solution energy
of 0.96 eV per titanium ion. If a third{Ti●

Fe(o) : O′′i :
Ti●

Al(t) }× cluster is adjacent to the two cluster complex
the solution energy is reduced further to 0.87 eV per
titanium ion. Such defect clustering is reminiscent
of the triple octahedral planes in the Ca4Fe2Ti2O11
structure proposed by Prasanna and Navrotsky [12].
This therefore provides a possible connection between
titanium ordering in the ferrite phase and the structures
of intermediate phases in the ferrite-calcium titanate
system. However, such a picture is inconsistent with
the structure proposed for Ca3Fe2TiO8 [12] which has
only double octahedral planes.

Figure 1 Solution of CT in C4AF, (a) b-c projection of a single unit cell showing the position of (b) one eighth of a unit cell, (c) the structure of a
{Ti●

Fe(o) : O′′i : Ti●

Al(t) }× cluster and (d) a{Ti●

Fe(o) : O′′i : Ti●

Al(t) : Ti●

Fe(o) : O′′i : Ti●

Al(t) }× cluster.

Under reducing conditions C4AF contains Fe′Al(t) de-
fects which are compensated by V●●

O. If defect clus-
ter formation occurs, the most stable defect cluster is
{Fe′Fe(o) : V●●

O : Fe′Fe(o)} in which the Fe2+ ion now re-
sides on an iron site. Solution of CT in the reduced
material results in the presence of Ti●

Fe(o) which be-
comes the compensating defect for the Fe′

Al(t) defects
present under reducing conditions. These defects may
also form clusters,{Fe′Al(t) : Ti●

Fe(o)}. Solution of CT
in the reduced material, assuming clustering, should
therefore be written,

2CT + {Fe′Fe(o) : V●●

O : Fe′Fe(o)} + Fe×Fe(o)

−→ 2Ca×Ca+ 2{Fe′Al(t) : Ti●

Fe(o)} + 6O×O

In this case, the solution energy is−0.43 eV, not as
favourable as the case where cluster formation was
assumed to not occur. This is because the{Fe′Fe(o) :
V●●

O : Fe′Fe(o)} cluster binding energy is more than twice
that of the{Fe′Al(t) : Ti●

Fe(o)} defect. Nevertheless the
solution energy is still negative, and solution of CT is
greatly enhanced under reducing conditions.

TABLE IV Summary of lowest energy CT solution mechanisms

solution energy compensating
compound (eV per Ti) defect

α-Al2O3 4.69 Ca′Al
CA 3.79 O′′i
C3A 2.76 V′′Ca
α-Fe2O3 2.33 Fe′Fe
CF 1.78 Fe′Fe
C4AF 1.72 O′′i
C2A 1.65 O′′i
C2F 1.51 O′′i
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4. Conclusions
The relative values of the calculated CT solution en-
ergies in Al2O3, Fe2O3, CF, C2F, CA, C2A, C3A, and
C4AF are consistent with finding titanium primarily
in the ferrite phases rather than the other compounds
listed. In addition, the simulations indicate that in all
cases, titanium substitutes for trivalent host cations, and
the compensating defects vary from compound to com-
pound. The calculated solution energies and compen-
sating defects are summarized in Table IV.

Several more detailed conclusions regarding the fer-
rite phase can also be made:

• In the dilute limit titanium clearly favours the oc-
tahedral site in the ferrite phase.
• Under reducing conditions Ti solution in the ferrite

phase is greatly enhanced.
• When Fe reduction does not occur defect cluster

formation significantly reduces the solution en-
ergy.
• The most stable defect cluster geometries closely

resemble the arrangement of ions in the solute CT
lattice.
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